ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

Γραμμική Άλγεβρα

1. ΓΕΝΙΚΑ

ΣΧΟΛΗ Σχολή Μηχανικών
ΤΜΗΜΑ Τμήμα Μηχανικών Πληροφορικής, Υπολογιστών και Τηλεπικοινωνιών
ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό
ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ %cf%80%ce%bb%cf%8501063 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 1o
ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Γραμμική Άλγεβρα
ΑΥΤΟΤΕΛΕΙΣ ΔΙΔΑΚΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ
σε περίπτωση που οι πιστωτικές μονάδες απονέμονται σε διακριτά μέρη του μαθήματος π.χ. Διαλέξεις, Εργαστηριακές Ασκήσεις κ.λπ. Αν οι πιστωτικές μονάδες απονέμονται ενιαία για το σύνολο του μαθήματος αναγράψτε τις εβδομαδιαίες ώρες διδασκαλίας και το σύνολο των πιστωτικών μονάδων.
ΕΒΔΟΜΑΔΙΑΙΕΣ ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΠΙΣΤΩΤΙΚΕΣ ΜΟΝΑΔΕΣ
Διαλέξεις 2 5
Ασκήσεις Πράξης 1
Εργαστηριακές Ασκήσεις 1
Προσθέστε σειρές αν χρειαστεί. Η οργάνωση διδασκαλίας και οι διδακτικές μέθοδοι που χρησιμοποιούνται περιγράφονται αναλυτικά στο 4.    
ΤΥΠΟΣ ΜΑΘΗΜΑΤΟΣ
Γενικής Υποδομής (ΓΥ),Ειδικής Υποδομής (ΕΥ), Γενικών Γνώσεων (ΓΓΔ) και Επιστημονικής Περιοχής (ΔΔΤΝ, ΕΔ, ΕΥΣ, ΗΛ, ΠΑ) .
 Γενικού υποβάθρου
ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΜΑΘΗΜΑΤΑ:  
ΓΛΩΣΣΑ ΔΙΔΑΣΚΑΛΙΑΣ και ΕΞΕΤΑΣΕΩΝ:  Ελληνικά
ΤΟ ΜΑΘΗΜΑ ΠΡΟΣΦΕΡΕΤΑΙ ΣΕ ΦΟΙΤΗΤΕΣ ERASMUS Όχι
ΗΛΕΚΤΡΟΝΙΚΗ ΣΕΛΙΔΑ ΜΑΘΗΜΑΤΟΣ (URL) http://www.teicm.gr/icd/staff/anastasiou/?page_id=106

2. ΜΑΘΗΣΙΑΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ

Μαθησιακά Αποτελέσματα
Περιγράφονται τα μαθησιακά αποτελέσματα του μαθήματος οι συγκεκριμένες  γνώσεις, δεξιότητες και ικανότητες καταλλήλου επιπέδου που θα αποκτήσουν οι φοιτητές μετά την επιτυχή ολοκλήρωση του μαθήματος.

Στο μάθημα παρουσιάζονται οι βασικές έννοιες της Γραμμικής Άλγεβρας (θεωρία διανυσμάτων και πινάκων). Συμπληρωματικά καλύπτεται η βασική θεωρία μιγαδικών αριθμών στις πράξεις πινάκων, την επίλυση γραμμικών συστημάτων και στον υπολογισμό ιδιοτιμών.

Στο εργαστηριακό μέρος του μαθήματος οι φοιτητές εξοικειώνονται με τη χρήση του λογισμικού Matlab σε αριθμητικούς υπολογισμούς που σχετίζονται άμεσα με τη θεωρία στην οποία ήδη έχουν καταρτιστεί.

Μετά την παρακολούθηση του μαθήματος οι φοιτητές θα πρέπει να:

  • Γνωρίζουν και να κατανοούν τα βασικά θεωρήματα που διέπουν την Ανάλυση μιγαδικών αριθμών και τη Γραμμική Άλγεβρα.
  • Κατανοούν την αποδεικτική διαδικασία στα Μαθηματικά και να δύνανται να πραγματοποιούν οι ίδιοι αποδείξεις σε θεωρητικές ασκήσεις.
  • Κατανοούν τον τρόπο υπολογισμού των μαθηματικών οντοτήτων που προαναφέρθηκαν.
  • Δύνανται να φέρουν εις πέρας απλούς υπολογισμούς χωρίς τη βοήθεια τεχνικών μέσων.
  • Γνωρίζουν και να δύνανται να εφαρμόσουν τις προαναφερθείσες μαθηματικές έννοιες σε πρακτικά προβλήματα (π.χ. επίλυση μικρών γραμμικών συστημάτων με διάφορους τρόπους, κ.τ.λ.).
  • Να είναι ικανοί να χρησιμοποιούν τις γνώσεις τους σε εφαρμογές στον Υπολογιστή και την εξαγωγή αριθμητικών αποτελεσμάτων μέσω του Matlab.
Γενικές Ικανότητες
Λαμβάνοντας υπόψη τις γενικές ικανότητες που πρέπει να έχει αποκτήσει ο πτυχιούχος (όπως αυτές αναγράφονται στο Παράρτημα Διπλώματος και παρατίθενται ακολούθως) σε ποια / ποιες από αυτές αποσκοπεί το μάθημα;.
Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών με τη χρήση και των απαραίτητων τεχνολογιών - Προσαρμογή σε νέες καταστάσεις - Λήψη αποφάσεων - Αυτόνομη εργασία - Ομαδική εργασία - Εργασία σε διεθνές περιβάλλον - Εργασία σε διεπιστημονικό περιβάλλον - Παράγωγή νέων ερευνητικών ιδεών Σχεδιασμός και διαχείριση έργων - Σεβασμός στη διαφορετικότητα και στην πολυπολιτισμικότητα - Σεβασμός στο φυσικό περιβάλλον - Επίδειξη κοινωνικής, επαγγελματικής και ηθικής υπευθυνότητας και ευαισθησίας σε θέματα φύλου - Άσκηση κριτικής και αυτοκριτικής - Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης
  • Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών.
  • Προσαρμογή σε νέες καταστάσεις.
  • Αυτόνομη εργασία.
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης.

3. ΠΕΡΙΕΧΟΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

  • Σύνολο μιγαδικών αριθμών, μιγαδικό επίπεδο, γεωμετρική αναπαράσταση μιγαδικού, συζυγής μιγαδικός, μέτρο, φάση.
  • Καρτεσιανή και πολική μορφή μιγαδικού και μετασχηματισμοί αυτών.
  • Ταυτότητα Euler.
  • Στοιχειώδεις πράξεις μιγαδικών (προσθαφαίρεση, πολ/σμός, διαίρεση) και γεωμετρική ερμηνεία αυτών.
  • Ρίζες μιγαδικών αριθμών.
    …………………………………………….
  • Σύνολο πινάκων, ορισμοί στοιχειωδών πράξεων πινάκων, ιδιότητες.
  • Ορίζουσα πίνακα, αντίστροφος και ανάστροφος πίνακας, μοναδιαίος πίνακας, ειδικές μορφές πινάκων.
  • Επίλυση γραμμικού συστήματος εξισώσεων, αδύνατα συστήματα, αόριστα συστήματα, παραμετρικότητα λύσεων.
  • Μέθοδος Cramer, απαλοιφή κατά Gauss.
  • Ιδιοτιμές και ιδιοδιανύσματα. Διαγωνιοποίηση πινάκων.

4. ΔΙΔΑΚΤΙΚΕΣ και ΜΑΘΗΣΙΑΚΕΣ ΜΕΘΟΔΟΙ - ΑΞΙΟΛΟΓΗΣΗ

ΤΡΟΠΟΣ ΠΑΡΑΔΟΣΗΣ
Πρόσωπο με πρόσωπο, Εξ αποστάσεως εκπαίδευση κ.λπ.
  • Θεωρητική από έδρας διδασκαλία με συζήτηση και ενεργό συμμετοχή των φοιτητών. Δίνεται έμφαση στην παράδοση επί του πίνακα, διότι αποτελεί πεποίθηση του διδάσκοντα ότι τα μαθηματικά γίνονται κατανοητά μόνω μέσω της λεπτομερούς αποδεικτικής διαδικασίας. Σε περίπτωση επίδειξης πολύπλοκων γραφικών παραστάσεων χρησιμοποιείται επικουρικά το Power Point.
  • Οι εργαστηριακές ασκήσεις πραγματοποιούνται σε υπολογιστή με τη βοήθεια του λογισμικού Matlab.
ΧΡΗΣΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ
Χρήση Τ.Π.Ε. στη Διδασκαλία, στην Εργαστηριακή Εκπαίδευση, στην Επικοινωνία με τους φοιτητές
  • Χρήση εξειδικευμένου λογισμικού.
  • Επικοινωνία με φοιτητές μέσω e-mail, της ιστοσελίδας του μαθήματος και της ιστοσελίδας του Τμήματος.
ΟΡΓΑΝΩΣΗ ΔΙΔΑΣΚΑΛΙΑΣ
Περιγράφονται αναλυτικά ο τρόπος και μέθοδοι διδασκαλίας. Διαλέξεις, Σεμινάρια, Εργαστηριακή Άσκηση, Άσκηση Πεδίου, Μελέτη & ανάλυση βιβλιογραφίας, Φροντιστήριο, Πρακτική (Τοποθέτηση), Κλινική Άσκηση, Καλλιτεχνικό Εργαστήριο, Διαδραστική διδασκαλία, Εκπαιδευτικές επισκέψεις, Εκπόνηση μελέτης (project), Συγγραφή εργασίας / εργασιών, Καλλιτεχνική δημιουργία, κ.λπ. Αναγράφονται οι ώρες μελέτης του φοιτητή για κάθε μαθησιακή δραστηριότητα καθώς και οι ώρες μη καθοδηγούμενης μελέτης ώστε ο συνολικός φόρτος εργασίας σε επίπεδο εξαμήνου να αντιστοιχεί στα standards του ECTS

Οργάνωση Διδασκαλίας

ΔραστηριότηταΦόρτος εργασίας εξαμήνου
Διαλέξεις26
Ασκήσεις Πράξης13
Εργαστηριακές Ασκήσεις13
Συγγραφή εργαστηριακών αναφορών13
Αυτοτελής Μελέτη60
Σύνολο125
ΑΞΙΟΛΟΓΗΣΗ ΦΟΙΤΗΤΩΝ
Περιγραφή της διαδικασίας αξιολόγησης Γλώσσα Αξιολόγησης, Μέθοδοι αξιολόγησης, Διαμορφωτική ή Συμπερασματική, Δοκιμασία Πολλαπλής Επιλογής, Ερωτήσεις Σύντομης Απάντησης, Ερωτήσεις Ανάπτυξης Δοκιμίων, Επίλυση Προβλημάτων, Γραπτή Εργασία, Έκθεση / Αναφορά, Προφορική Εξέταση, Δημόσια Παρουσίαση, Εργαστηριακή Εργασία, Κλινική Εξέταση Ασθενούς, Καλλιτεχνική Ερμηνεία, Άλλη / Άλλες. Αναφέρονται ρητά προσδιορισμένα κριτήρια αξιολόγησης και εάν και που είναι προσβάσιμα από τους φοιτητές.

Ο τελικός βαθμός του μαθήματος διαμορφώνεται από την επίδοση του φοιτητή στη αξιολόγηση του θεωρητικού μέρους και σε αυτόν μπορεί να έχει συμβολή και η επίδοση στο εργαστηριακό μέρος. Ο βαθμός του θεωρητικού μέρους διαμορφώνεται από γραπτή τελική εξέταση.

  1. Η γραπτή τελική εξέταση του θεωρητικού μέρους μπορεί να περιλαμβάνει:
    • Επίλυση προβλημάτων εφαρμογής των γνώσεων που αποκτήθηκαν.
    • Συγκριτική αξιολόγηση στοιχείων θεωρίας.
    • Προβλήματα συγκριτικά μεγαλύτερης δυσκολίας από τα υπόλοιπα που βαθμολογούνται προσθετικά ως κίνητρο αριστείας.
    • Ερωτήσεις πολλαπλής επιλογής σε ειδικές κατηγορίες φοιτητών (δυσλεκτικών κ.τ.λ.).
  2. Η εξέταση των ασκήσεων του εργαστηρίου περιλαμβάνει:
    • δύο (2) τουλάχιστον ενδιάμεσες αξιολογήσεις της κατανόησης της ύλης και των εργαστηριακών δεξιοτήτων που αποκτήθηκαν μέσω εργαστηριακής εξέτασης ή και εξέτασης ανατεθέντων εργαστηριακών ασκήσεων κατά την οποία γίνεται και χρήση του εργαστηριακού εξοπλισμού ή προσομοιώσεων.

5. ΣΥΝΙΣΤΩΜΕΝΗ ΒΙΒΛΙΟΓΡΑΦΙΑ

Συγγράμματα

Συγγράμματα μέσω του συστήματος ΕΥΔΟΞΟΣ:

  1. Χρ. Μωυσιάδη, Ανώτερα Μαθηματικά, Εκδόσεις Χριστοδουλίδη, Θεσσαλονίκη 2010.
  2. Α. Αθανασιάδη, Διαφορικός και Ολοκληρωτικός Λογισμός Συναρτήσεων μίας Μεταβλητής και Εισαγωγή στη Γραμμική Άλγεβρα, Εκδόσεις Τζιόλα, Θεσσαλονίκη 2006.
  3. Β. Σάλτα, Μαθηματικά Ι: Θεωρία και Πράξη, Εκδόσεις Γκιούρδα, Αθήνα 2007.

Συμπληρωματική προτεινόμενη βιβλιογραφία:

  1. Φ. Ξένου, Γραμμική Άλγεβρα και Αναλυτική Γεωμετρία, Πολυτεχνική Σχολή Α.Π.Θ., Θεσσαλονίκη 1993.
  2. Λ. Τσίτσα, Μαθήματα Γενικών Μαθηματικών, Τόμος Ι, Καποδιστριακό Πανεπιστήμιο Αθηνών, Αθήνα, 1980.
  3. G. Strang, Linear Algebra and its Applications, Third Edition, HBJ Publishers, San Diego CA, USA, 1986.